A neural network model to forecast Japanese demand for travel to Hong Kong
نویسندگان
چکیده
Apart from simple guesswork, time-series and regression techniques have largely dominated forecasting models for international tourism demand. This paper presents a new approach that uses a supervised feed-forward neural network model to forecast Japanese tourist arrivals in Hong Kong. The input layer of the neural network contains six nodes: Service Price, Average Hotel Rate, Foreign Exchange Rate, Population, Marketing Expenses, and Gross Domestic Expenditure. The single node in the output layer of the neural network represents the Japanese demand for travel to Hong Kong. Officially published annual data in the period of 1967 to 1996 were used to build the neural network. Estimated Japanese arrivals were compared with actual published Japanese arrivals. Experimental results showed that using the neural network model to forecast Japanese arrivals outperforms multiple regression, naı̈ve, moving average, and exponent smoothing. ( 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Prospect of Electronic Road Pricing in Hong kong
To cope with the urban congestion problem resulted from rapid urbanization some cities are successfully using Electronic Road Pricing policy as a demand management measure. In 1982, Hong Kong Governmenttook initiative to experiment electronic road pricing in Hong Kong. Though, the project outcome reveals that Electronic Road Pricing could bring tremendous economic, social and environmental bene...
متن کاملThe Contribution of Ageing to Hospitalisation Days in Hong Kong: A Decomposition Analysis
Background Ageing has become a serious challenge in Hong Kong and globally. It has serious implications for health expenditure, which accounts for nearly 20% of overall government expenditure. Here we assess the contribution of ageing and related factors to hospitalisation days in Hong Kong. We used hospital discharge data from all publicly funded hospitals in Hong Kong between 2001 and 2012. ...
متن کاملمدل سازی ترکیبی پیش بینی تقاضای گردشگری پزشکی داخلی شهر تهران
Introduction: One of the most important events in the tourism industry of each country is the demand for a product or destination and its true prediction of tourism. It should be noted that there are distances and deviations between actual values and predictions. The use of modern scientific and forecasting methods will make the results far more than an objective estimate and closer to the trut...
متن کاملA Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast
Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کامل